

AMG for Linear Systems Obtained by Local Elimination

Tzanio Kolev

tzanio@llnl.gov

Lawrence Livermore National Laboratory

joint work with Thomas Brunner and Robert Falgout

May 4, 2010

ASCR PI Meeting – Berkeley, 2010

Parallel scalability and Multigrid

> Scalability is a central issue for large-scale parallel computing

- Scalability
- **❖** AMG
- **❖** AMS
- Research topics

Local elimination

Memory considerations

Will AMG work?

Numerical results

Parallel scalability and Multigrid

- Scalability
- **❖** AMG
- **❖** AMS
- Research topics

Local elimination

Memory considerations

Will AMG work?

Numerical results

Conclusions

AMG for scalar diffusion

Algebraic Multigrid

Scalability

❖ AMG

- **❖** AMS
- ❖ Research topics

Local elimination

Memory considerations

Will AMG work?

Numerical results

Conclusions

$$-\nabla \cdot \sigma \nabla u = f \quad \text{in } \Omega \,, \qquad u = 0 \quad \text{on } \partial \Omega \,.$$

AMG for scalar diffusion

Algebraic Multigrid

Scalability

❖ AMG

- **❖** AMS
- Research topics

Local elimination

Memory considerations

Will AMG work?

Numerical results

Conclusions

$$-\nabla \cdot \sigma \nabla u = f \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial \Omega.$$

AMG for scalar diffusion

Algebraic Multigrid

Scalability

❖ AMG

- **❖** AMS
- Research topics

Local elimination

Memory considerations

Will AMG work?

Numerical results

Conclusions

$$-\nabla \cdot \sigma \nabla u = f \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial \Omega.$$

> Performance remains scalable on unstructured grids

26B unknowns on 98K processors took 210s (16 iterations)

AMS for electromagnetic diffusion

Algebraic Multigrid

- Scalability
- ❖ AMG

❖ AMS

- Research topics
- Local elimination
- Memory considerations
- Will AMG work?
- Numerical results
- Conclusions

∇	×	μ^{-}	$^{-1}\nabla$	X	<i>e</i> -	+ o	re	=	\boldsymbol{f}

AMS for electromagnetic diffusion

Algebraic Multigrid

Scalability

❖ AMG

❖ AMS

Research topics

Local elimination

Memory considerations

Will AMG work?

Numerical results

Conclusions

$$\nabla \times \mu^{-1} \nabla \times \boldsymbol{e} + \sigma \, \boldsymbol{e} = \boldsymbol{f}$$

AMS for electromagnetic diffusion

$$\nabla \times \mu^{-1} \nabla \times \boldsymbol{e} + \sigma \, \boldsymbol{e} = \boldsymbol{f}$$

> Performance remains scalable on unstructured grids

1.2B unknowns on 1.9K processors took **355s** (23 iterations)

Scalability

Algebraic Multigrid

❖ Research topics

Local elimination

Memory considerations

Will AMG work?

Numerical results

Algebraic Multigrid

- Scalability
- **❖** AMG
- **❖** AMS

Research topics

Local elimination

Memory considerations

Will AMG work?

Numerical results

Conclusions

AMG research topics

Parallel smoothers in AMG

- critical component of AMG, not easy to parallelize
- polynomial smoothers
- hybrid Gauss-Seidel
 - convergence properties degrade, but AMG smoothing properties remain independent of number of processors (for large enough size per processor)
- smoothing analysis based on the two-level AMG convergence theory of Falgout and Vassilevski (SINUM 2004)

Adaptive AMG

- black box (discovers the local nature of smoothness)
- applicable to a wide range of problems (QCD)
- theory for interpolation based on local least-squares fit of global spectrum (related to Brandt's Bootstrap AMG)
- AMG for linear systems obtained by local elimination

Algebraic Multigrid

Local elimination

❖ Schur reduction

Application

Memory considerations

Will AMG work?

Numerical results

Conclusions

$$Ax = b$$

- want to solve it with Algebraic Multigrid (AMG)

Algebraic Multigrid

Local elimination

Schur reduction

Application

Memory considerations

Will AMG work?

Numerical results

Conclusions

Original problem

$$Ax = b$$

- want to solve it with Algebraic Multigrid (AMG)
- Eliminate "interior" degrees of freedom

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{ii} & \mathbf{A}_{ir} \\ \mathbf{A}_{ri} & \mathbf{A}_{rr} \end{pmatrix}$$

ightharpoonup local elimination ightharpoonup A_{ii} is block-diagonal

Algebraic Multigrid

Local elimination

❖ Schur reduction

Application

Memory considerations

Will AMG work?

Numerical results

Conclusions

Original problem

$$Ax = b$$

- want to solve it with Algebraic Multigrid (AMG)
- Eliminate "interior" degrees of freedom

$$A = \begin{pmatrix} A_{ii} & A_{ir} \\ A_{ri} & A_{rr} \end{pmatrix}$$

- ightharpoonup local elimination ightharpoonup A_{ii} is block-diagonal
- Reduced problem

$$Sx_r = b_r$$

 \triangleright the Schur complement $S = A_{rr} - A_{ri}A_{ii}^{-1}A_{ir}$ is *sparse*

Algebraic Multigrid

Local elimination

❖ Schur reduction

Application

Memory considerations

Will AMG work?

Numerical results

Conclusions

$$Ax = b$$

- want to solve it with Algebraic Multigrid (AMG)
- Eliminate "interior" degrees of freedom

$$A = \begin{pmatrix} A_{ii} & A_{ir} \\ A_{ri} & A_{rr} \end{pmatrix}$$

- ightharpoonup local elimination ightharpoonup A_{ii} is block-diagonal
- Reduced problem

$$Sx_r = b_r$$

- \triangleright the Schur complement $S = A_{rr} A_{ri}A_{ii}^{-1}A_{ir}$ is *sparse*
- Is this a good idea?

Algebraic Multigrid

Local elimination

Schur reduction

Application

Memory considerations

Will AMG work?

Numerical results

Conclusions

$$Ax = b$$

- want to solve it with Algebraic Multigrid (AMG)
- Eliminate "interior" degrees of freedom

$$A = \begin{pmatrix} A_{ii} & A_{ir} \\ A_{ri} & A_{rr} \end{pmatrix}$$

- ightharpoonup local elimination ightharpoonup A_{ii} is block-diagonal
- Reduced problem

$$Sx_r = b_r$$

- \triangleright the Schur complement $S = A_{rr} A_{ri}A_{ii}^{-1}A_{ir}$ is *sparse*
- Is this a good idea? S has a smaller size, but does it require less memory?

Algebraic Multigrid

Local elimination

Schur reduction

Application

Memory considerations

Will AMG work?

Numerical results

Conclusions

$$Ax = b$$

- > A FEM for scalar/electromagnetic diffusion
- want to solve it with Algebraic Multigrid (AMG)
- Eliminate "interior" degrees of freedom

$$A = \begin{pmatrix} A_{ii} & A_{ir} \\ A_{ri} & A_{rr} \end{pmatrix}$$

- ightharpoonup local elimination ightharpoonup A_{ii} is block-diagonal
- Reduced problem

$$Sx_r = b_r$$

- \triangleright the Schur complement $S = A_{rr} A_{ri}A_{ii}^{-1}A_{ir}$ is *sparse*
- Is this a good idea? if AMG works for A, will it also work for S?

Algebraic Multigrid

Local elimination

❖ Schur reduction

Application

Memory considerations

Will AMG work?

Numerical results

Conclusions

$$Ax = b$$

- want to solve it with Algebraic Multigrid (AMG)
- Eliminate "interior" degrees of freedom

$$A = \begin{pmatrix} A_{ii} & A_{ir} \\ A_{ri} & A_{rr} \end{pmatrix}$$

- ightharpoonup local elimination ightharpoonup A_{ii} is block-diagonal
- Reduced problem

$$Sx_r = b_r$$

- \triangleright the Schur complement $S = A_{rr} A_{ri}A_{ii}^{-1}A_{ir}$ is *sparse*
- Is this a good idea? can we solve larger problems faster?

Algebraic Multigrid

Local elimination

Schur reduction

Application

Memory considerations

Will AMG work?

Numerical results

Conclusions

Motivating application

- Large-scale parallel multi-physics simulation code
 - Electromagnetic diffusion model
 - Second order definite Maxwell

$$\nabla imes \frac{\Delta t}{\mu} \nabla imes \boldsymbol{e} + \sigma \, \boldsymbol{e} = \boldsymbol{f}$$

- > Lowest order edge elements
- ightarrow Large jumps in σ
- > Support for pure void zones

Algebraic Multigrid

Local elimination

Schur reduction

Application

Memory considerations

Will AMG work?

Numerical results

Conclusions

Motivating application

- Large-scale parallel multi-physics simulation code
 - Electromagnetic diffusion model
 - Second order definite Maxwell

$$\nabla imes \frac{\Delta t}{\mu} \nabla imes \boldsymbol{e} + \sigma \, \boldsymbol{e} = \boldsymbol{f}$$

- > Lowest order edge elements
- \triangleright Large jumps in σ
- > Support for pure void zones

- Initial quad/hex mesh split into 4/24 tri/tet elements
- $\triangleright XY$, RZ and 3D models lead to
 - 2D Poisson
 - 2D Maxwell
 - 3D Maxwell

Memory - the case of no fill-in

Algebraic Multigrid

Local elimination

Memory considerations

Static condensation

- Element reduction
- ❖ 2D case
- ❖ 3D case

Will AMG work?

Numerical results

Conclusions

introduced by E. Wilson in 1974 to

Static condensation

"eliminate the internal degrees of freedom in a quadrilateral finite element constructed from four triangles"

frequently used to eliminate the interior degrees of freedom in high-order FEM

 \triangleright sparsity of A_{rr} is not increased!

An element reduction approach

Algebraic Multigrid

Local elimination

Memory considerations

- Static condensation
- Element reduction
- ❖ 2D case
- ❖ 3D case

Will AMG work?

Numerical results

- 1. Choose the set of reduced elements
- Determine the interior dofs
- 3. Connect reduced unknowns

- Reduced FEM discretization
 - > Reduced elements
 - Reduced degrees of freedom
 - Reduced element matrices (local Schur complements)

Element reduction in 2D

Algebraic Multigrid

Local elimination

Memory considerations

- Static condensation
- Element reduction
- 2D case
- ❖ 3D case

Will AMG work?

Numerical results

Conclusions

■ The XY case (2D nodal FEM)

- > Asymptotically $nrows(A)/nrows(S) \sim 2$, $nnz(A)/nnz(S) \sim 1.6$
- The RZ case (2D edge FEM)

- ightharpoonup Asymptotically $nrows(A)/nrows(S) \sim 3$, $nnz(A)/nnz(S) \sim 2.1$
- In both cases we recover the associated quad mesh, but not the quad-based discretization!

Element reduction in 3D

Algebraic Multigrid

Local elimination

Memory considerations

- Static condensation
- ❖ Element reduction
- ❖ 2D case
- ❖ 3D case

Will AMG work?

Numerical results

Conclusions

- The full 3D case (3D edge FEM)
 - $ho S_H$: hexahedral reduced elements, $nnz(A)/nnz(S) \sim 0.4$

 $hd S_O$: octahedral reduced elements, $nnz(A)/nnz(S) \sim 1.4$

Octahedral reduction is the best in terms of memory usage!

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- ❖ Schur complement
- ❖ AMG solvers
- ❖ Interpolation operators
- ♦ HX decomposition
- ❖ Near-nullspace
- ♦ HX-r decomposition
- Subspace problems
- ❖ Bad aspect ratios

Numerical results

Conclusions

If AMG works for A, will it also work for S?

Schur complement properties

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

❖ Schur complement

- AMG solvers
- Interpolation operators
- ♦ HX decomposition
- ❖ Near-nullspace
- HX-r decomposition
- Subspace problems
- ❖ Bad aspect ratios

Numerical results

Conclusions

- The Schur complement inherits a lot of solver-friendly properties from the original matrix
 - > S can be assembled locally

 - $\triangleright \kappa(S) \le \kappa(A)$
- S can be seen as a coarse-grid matrix corresponding to interpolation by a harmonic extension

$$S = P^t A P$$
, where $P = \begin{pmatrix} -A_{ii}^{-1} A_{ir} \\ I \end{pmatrix}$.

Energy minimization property

$$(Sx_r, x_r) = \inf_{x|_r = x_r} (Ax, x)$$

■ In particular, $D_S \leq D_A$, where $D_M := diag(M)$.

AMG solvers

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

❖ Schur complement

❖ AMG solvers

- Interpolation operators
- ♦ HX decomposition
- ❖ Near-nullspace
- HX-r decomposition
- Subspace problems
- Bad aspect ratios

Numerical results

- Require knowledge of near nullspace: $Ae \approx 0$
- Classical AMG for Poisson problems
 - near nullspace is locally constant
 - \triangleright coarsening and interpolation based on strength of connection: e_i strongly depends on e_i if

$$-A_{ij} \ge \theta \max_{k \ne i} \{-A_{ik}\}$$

- $> 0 < \theta \le 1$ is the strength threshold parameter.
- Auxiliary-space Maxwell Solver (AMS) for definite Maxwell
 - > near nullspace is large, includes local gradients
 - based on the finite element HX decomposition by Hiptmair and Xu
 - two (auxiliary space) V-cycles requiring discrete gradient and Nedelec interpolation matrices

AMS interpolation operators

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- Schur complement
- AMG solvers

❖ Interpolation operators

- HX decomposition
- ❖ Near-nullspace
- HX-r decomposition
- Subspace problems
- Bad aspect ratios

Numerical results

Conclusions

Discrete gradient matrix G corresponds to the mapping

$$\varphi \in S_h \mapsto \nabla \varphi \in V_h$$
,

G describes the edges of the mesh in terms of its vertices.

The Nedelec interpolation operator Π_h transfers linear vector fields $\varphi \in S_h \equiv S_h^3$ into V_h :

$$oldsymbol{\Pi}_h oldsymbol{arphi} = \sum_e \left(\int_e oldsymbol{arphi} \cdot oldsymbol{t}_e \, ds
ight) \, oldsymbol{\Phi}_e \, .$$

 $\Pi = [\Pi_x \Pi_y \Pi_z]$ – the matrix representation of Π_h can be computed based on G and the coordinates of the vertices.

HX decomposition and AMS

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- ❖ Schur complement
- ❖ AMG solvers
- Interpolation operators

♦ HX decomposition

- ❖ Near-nullspace
- HX-r decomposition
- Subspace problems
- Bad aspect ratios

Numerical results

Conclusions

lacktriangle Hiptmair-Xu decomposition: any $oldsymbol{u}_h \in oldsymbol{V}_h$ can be split into

$$oldsymbol{u}_h = oldsymbol{v}_h +
abla p_h + oldsymbol{\Pi}_h oldsymbol{z}_h$$

where $v_h \in V_h$, $p_h \in S_h$ and $z_h \in S_h$ satisfy

$$|h^{-1}||v_h||_{\mathbf{0}} + ||z_h||_{\mathbf{1}} \le C ||\nabla \times u_h||_{\mathbf{0}}, \qquad ||\nabla p_h||_{\mathbf{0}} \le C ||u_h||_{\mathbf{0}}.$$

R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in $H(\mathbf{curl})$ and $H(\mathbf{div})$ spaces, *SINUM*, *2007*.

HX decomposition and AMS

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- ❖ Schur complement
- AMG solvers
- ❖ Interpolation operators

♦ HX decomposition

- ❖ Near-nullspace
- HX-r decomposition
- Subspace problems
- Bad aspect ratios

Numerical results

Conclusions

lacktriangle Hiptmair-Xu decomposition: any $oldsymbol{u}_h \in oldsymbol{V}_h$ can be split into

$$\boldsymbol{u}_h = \boldsymbol{v}_h + \nabla p_h + \boldsymbol{\Pi}_h \boldsymbol{z}_h$$

where $v_h \in V_h$, $p_h \in S_h$ and $z_h \in S_h$ satisfy

$$|h^{-1}||v_h||_{\mathbf{0}} + ||z_h||_{\mathbf{1}} \le C ||\nabla \times u_h||_{\mathbf{0}}, \qquad ||\nabla p_h||_{\mathbf{0}} \le C ||u_h||_{\mathbf{0}}.$$

R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in $H(\mathbf{curl})$ and $H(\mathbf{div})$ spaces, *SINUM*, 2007.

AMS implementation

$$B = R + GBG^T + \Pi B_v \Pi^T$$

where

- \triangleright R is a point smoother for A.
- \triangleright B is an AMG V-cycle for G^TAG .
- $ho \ \mathrm{B}_v \ \text{ is an AMG V-cycle for } \Pi^\mathrm{T}\mathrm{A}\Pi \ (\|\mathbf{\Pi}_h \boldsymbol{z}_h\|_{\boldsymbol{H}(\mathbf{curl})} \lesssim \|\boldsymbol{z}_h\|_{\mathbf{1}}).$

Near-nullspace reduction

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- ❖ Schur complement
- AMG solvers
- Interpolation operators
- HX decomposition

❖ Near-nullspace

- HX-r decomposition
- Subspace problems
- ❖ Bad aspect ratios

Numerical results

Conclusions

The near nullspace of S is the restriction of the near-nullspace of A to the reduced degrees of freedom:

 \triangleright Suppose $Ae \approx 0$, then $A_{ii}e_i + A_{ir}e_r \approx 0$ implies $e \approx Pe_r$, so

$$Se_r = P^t A Pe_r \approx P^t A e \approx 0$$
.

- \triangleright On the other hand, $(Se_r, e_r) \approx 0$ implies $Ae \approx 0$ for $e = Pe_r$.
- \triangleright for XY we can apply AMG directly to S

Near-nullspace reduction

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- Schur complement
- AMG solvers
- Interpolation operators
- ♦ HX decomposition

❖ Near-nullspace

- HX-r decomposition
- Subspace problems
- Bad aspect ratios

Numerical results

Conclusions

The near nullspace of S is the restriction of the near-nullspace of A to the reduced degrees of freedom:

 \triangleright Suppose $Ae \approx 0$, then $A_{ii}e_i + A_{ir}e_r \approx 0$ implies $e \approx Pe_r$, so

$$Se_r = P^t A Pe_r \approx P^t A e \approx 0$$
.

- \triangleright On the other hand, $(Se_r, e_r) \approx 0$ implies $Ae \approx 0$ for $e = Pe_r$.
- \triangleright for XY we can apply AMG directly to S
- Reduced discrete gradient and nodal interpolation matrices.
 - Edge reduction implies node reduction
 - Note that the discrete gradient matrix can be partitioned as

$$G = \begin{pmatrix} G_{ii} & G_{ir} \\ 0 & G_{rr} \end{pmatrix}$$

- \triangleright The restriction of Ran(G) to reduced unknowns is Ran(G_{rr}) the discrete gradient defined on the reduced mesh.
- \triangleright Same holds for Π , so we can apply AMS directly to S

Reduced HX decomposition

In matrix terms, the HX decomposition states that

$$u = v + Gp + \Pi z$$

such that

$$(Au, u) \gtrsim (AGp, Gp) + (A\Pi z, \Pi z) + (D_A v, v)$$

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- ❖ Schur complement
- AMG solvers
- ❖ Interpolation operators
- ♦ HX decomposition
- ❖ Near-nullspace

♦ HX-r decomposition

- Subspace problems
- ❖ Bad aspect ratios

Numerical results

Reduced HX decomposition

In matrix terms, the HX decomposition states that

$$u = v + Gp + \Pi z$$

such that

$$(Au, u) \gtrsim (AGp, Gp) + (A\Pi z, \Pi z) + (D_A v, v)$$

Fix \mathbf{u}_r and consider $\mathbf{u} = \mathbf{P}\mathbf{u}_r$ above. Then

$$\mathbf{u}_r = \mathbf{v}_r + \mathbf{G}_{rr} \mathbf{p}_r + \mathbf{\Pi}_{rr} \mathbf{z}_r$$

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- ❖ Schur complement
- AMG solvers
- ❖ Interpolation operators
- ♦ HX decomposition
- ❖ Near-nullspace

♦ HX-r decomposition

- Subspace problems
- ❖ Bad aspect ratios

Numerical results

Reduced HX decomposition

In matrix terms, the HX decomposition states that

$$u = v + Gp + \Pi z$$

such that

$$(Au, u) \gtrsim (AGp, Gp) + (A\Pi z, \Pi z) + (D_A v, v)$$

Fix \mathbf{u}_r and consider $\mathbf{u} = \mathbf{P}\mathbf{u}_r$ above. Then

$$\mathbf{u}_r = \mathbf{v}_r + \mathbf{G}_{rr} \mathbf{p}_r + \mathbf{\Pi}_{rr} \mathbf{z}_r$$

Therefore,

 $(Su_r, u_r) = (Au, u) \gtrsim (AGp, Gp) \ge (SG_{rr}p_r, G_{rr}p_r)$

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- ❖ Schur complement
- AMG solvers
- Interpolation operators
- HX decomposition
- ❖ Near-nullspace

HX-r decomposition

- Subspace problems
- Bad aspect ratios

Numerical results

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- ❖ Schur complement
- AMG solvers
- Interpolation operators
- HX decomposition
- ❖ Near-nullspace

HX-r decomposition

- Subspace problems
- ❖ Bad aspect ratios

Numerical results

Conclusions

Reduced HX decomposition

In matrix terms, the HX decomposition states that

$$u = v + Gp + \Pi z$$

such that

$$(Au, u) \gtrsim (AGp, Gp) + (A\Pi z, \Pi z) + (D_A v, v)$$

Fix \mathbf{u}_r and consider $\mathbf{u} = \mathbf{P}\mathbf{u}_r$ above. Then

$$\mathbf{u}_r = \mathbf{v}_r + \mathbf{G}_{rr} \mathbf{p}_r + \mathbf{\Pi}_{rr} \mathbf{z}_r$$

Therefore,

$$(Su_r, u_r) = (Au, u) \gtrsim (AGp, Gp) \ge (SG_{rr}p_r, G_{rr}p_r)$$

Similarly $(Su_r, u_r) \gtrsim (S\Pi_{rr}p_r, \Pi_{rr}p_r)$. Note that Π_{rr} can still be computed from G_{rr} and the coordinates of the reduced vertices.

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- ❖ Schur complement
- AMG solvers
- Interpolation operators
- HX decomposition
- ❖ Near-nullspace

HX-r decomposition

- Subspace problems
- Bad aspect ratios

Numerical results

Conclusions

Reduced HX decomposition

In matrix terms, the HX decomposition states that

$$u = v + Gp + \Pi z$$

such that

$$(Au, u) \gtrsim (AGp, Gp) + (A\Pi z, \Pi z) + (D_A v, v)$$

Fix \mathbf{u}_r and consider $\mathbf{u} = \mathbf{P}\mathbf{u}_r$ above. Then

$$\mathbf{u}_r = \mathbf{v}_r + \mathbf{G}_{rr} \mathbf{p}_r + \mathbf{\Pi}_{rr} \mathbf{z}_r$$

Therefore,

$$(Su_r, u_r) = (Au, u) \gtrsim (AGp, Gp) \ge (SG_{rr}p_r, G_{rr}p_r)$$

Similarly $(Su_r, u_r) \gtrsim (S\Pi_{rr}p_r, \Pi_{rr}p_r)$. Note that Π_{rr} can still be computed from G_{rr} and the coordinates of the reduced vertices.

Finally,

$$(Su_r, u_r) = (Au, u) \gtrsim (D_A v, v) \geq (D_S v_r, v_r)$$

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- ❖ Schur complement
- AMG solvers
- Interpolation operators
- HX decomposition
- ❖ Near-nullspace
- HX-r decomposition

Subspace problems

Bad aspect ratios

Numerical results

Conclusions

Reduced subspace problems

- lacksquare $G_{rr}^TSG_{rr}$ is the Schur complement of G^TAG
 - classical AMG works for the reduced subspace problems
- Commuting diagram

$$PG_{rr} = GP_n$$

where P_n – nodal G^TAG -harmonic extension:

$$P_n = \begin{pmatrix} -(G^T A G)_{ii}^{-1} (G^T A G)_{ir} \\ I \end{pmatrix}$$

Proof

$$lhs_i = -A_{ii}^{-1}A_{ir}G_{rr}, \quad rhs_i = -G_{ii}(G^TAG)_{ii}^{-1}(G^TAG)_{ir} + G_{ir}$$

Note that

$$(G^TAG)_{ii} = G_{ii}^TA_{ii}G_{ii}, \quad (G^TAG)_{ir} = G_{ii}^TA_{ii}G_{ir} + G_{ii}^TA_{ir}G_{rr}$$

Thus

$$(\mathbf{G}^T \mathbf{A} \mathbf{G})_{ii} \mathbf{G}_{ii}^{-1} r h s_i = \mathbf{G}_{ii}^T \mathbf{A}_{ii} r h s_i = -\mathbf{G}_{ii}^T \mathbf{A}_{ir} \mathbf{G}_{rr} = \mathbf{G}_{ii}^T \mathbf{A}_{ii} l h s_i$$

Now

$$\mathbf{P}_n^T \mathbf{G}^T \mathbf{A} \mathbf{G} \mathbf{P}_n = \mathbf{G}_{rr}^T \mathbf{P}^T \mathbf{A} \mathbf{P} \mathbf{G}_{rr} = \mathbf{G}_{rr}^T \mathbf{S} \mathbf{G}_{rr}$$

Meshes with stretched elements

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

- Schur complement
- AMG solvers
- Interpolation operators
- HX decomposition
- ❖ Near-nullspace
- HX-r decomposition
- Subspace problems

Bad aspect ratios

Numerical results

Conclusions

- A common occurrence in the motivating applications
- In 2D the reduction process will eliminate badly shaped triangles. In 3D the improvement is only marginal.
- Compare reduced stencil with the standard Q_1 FEM stencil (where AMG does not work with $\theta = 0.25$).

-1	-6	-1
2	12	2
-1	-6	-1

-1	-4	-1
2	8	2
-1	-4	-1

- ▶ Introducing and then eliminating the (artificial) interior unknowns leads to a better discretization for Multigrid!
- We expect improved performance on stretched grids in 2D.

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- ❖ Solvers used
- ❖ Box problem
- ♦ Box problem XY
- $\ \mbox{\bf \$}\ \mbox{Box problem} \ \mbox{\bf -}\ RZ$
- ♦ Box problem 3 D
- Coax problem
- ♦ Coax problem XY
- lacktriangle Coax problem RZ
- ♦ Coax problem 3D

Conclusions

Can we solve larger problems faster?

AMG solvers used

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

❖ Solvers used

- ❖ Box problem
- ❖ Box problem XY
- \clubsuit Box problem RZ
- ♦ Box problem 3D
- Coax problem
- ❖ Coax problem XY
- lacktriangle Coax problem RZ
- ♦ Coax problem 3D

Conclusions

Tests with BoomerAMG and AMS from


```
HYPRE_Solver solver;
HYPRE_AMSCreate(&solver);

/* Set discrete gradient matrix */
HYPRE_AMSSetDiscreteGradient(solver, G);
/* Set vertex coordinates */
HYPRE_AMSSetCoordinateVectors(solver, X, Y, Z);
HYPRE_AMSSetup(solver, A, b, x);
HYPRE AMSSolve(solver, A, b, x);
```

- Both applied as preconditioners in CG for the reduced problem.
- Using BoomerAMG's low-complexity coarsening and long-range interpolation options.
- Using the zero-conductivity version of AMS for problems with pure void.
- Notation: θ , σ_{nc}/σ_c , ε , n_{it} , t_{setup} , t_{solve} , t.

Box problem

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

Solvers used

❖ Box problem

- \clubsuit Box problem XY
- \clubsuit Box problem RZ
- \clubsuit Box problem 3D
- ❖ Coax problem
- \diamond Coax problem RZ
- ♦ Coax problem 3D

Conclusions

- Magnetic field diffuses through void and into material.
- Simplified serial test to vary conductivity ratio, aspect ratio and solver parameters.

problem	N	nnz
XY	33,025 / 16,641	230,145 / 148,225 (×1.6)
RZ	98,560 / 33,024	491,776 / 229,632 (×2.1)
3D	239,260 / 90,460	3,724,060 / 2,658,460 (×1.4)

- $\Delta t/\mu \sim 10^{-3}$
- AMS-CG convergence tolerance 10^{-10} .

Box problem - XY

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- Solvers used
- ❖ Box problem

\clubsuit Box problem - XY

- \clubsuit Box problem RZ
- ♦ Box problem 3 D
- ❖ Coax problem

- $\ \, \bullet \, {\it Coax problem } \, 3D$
- Conclusions

Comparison of overall solution times

$$\theta = 0.34, \, \sigma_{nc}/\sigma_c = 0$$

$1/\varepsilon$	n_{it}	$t_{assemble}$	t_{solver}	t
1	7/ 7	0.33/0.24	0.34/0.13	×1.8
2	13/ 8	0.30/0.21	0.43/0.13	×2.2
4	12/ 8	0.28/0.21	0.38/0.13	×2.0
8	12/12	0.28/0.21	0.37/0.17	×1.7
16	16/12	0.28/0.22	0.45/0.19	×1.7
32	24/11	0.28/0.21	0.62/0.17	×2.4
64	35/ 9	0.29/0.21	0.90/0.15	×3.2
128	40/ 7	0.32/0.22	1.10/0.14	×4.0
256	45/ 7	0.30/0.24	1.24/0.16	×3.8
512	45/ 7	0.28/0.23	1.12/0.13	×3.9
1024	46/ 7	0.32/0.24	1.32/0.16	×4.0
2048	46/ 7	0.29/0.24	1.29/0.16	×3.9
4096	46/ 7	0.30/0.25	1.37/0.15	×4.2

Note the reduced setup time and that when we have the same number of iterations ($\varepsilon = 1$) there is still a factor of 1.8 speedup.

Box problem - XY

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- Solvers used
- ❖ Box problem

❖ Box problem - XY

- \clubsuit Box problem RZ
- ♦ Box problem 3 D
- Coax problem
- $\ \, \bullet \, \mathsf{Coax} \,\, \mathsf{problem} \, \hbox{-} \,\, RZ$
- $\ \, \bullet \, {\it Coax problem } \, 3D$
- Conclusions

- Reduced problem dependence on σ
- $\theta = 0.4$

	σ_{nc}/σ_c					
$1/\varepsilon$	1	10^{-2}	10^{-4}	10^{-6}	10^{-8}	0
1	7	7	7	7	7	7
2	7	8	7	7	7	7
4	7	8	8	8	8	8
8	7	8	8	8	8	8
16	7	8	8	8	8	8
32	7	8	8	8	8	8
64	6	7	7	7	7	7
128	6	6	6	6	6	6
256	7	6	6	6	6	6
512	8	7	7	7	7	7
1024	8	7	7	7	7	7
2048	8	7	7	7	7	7
4096	8	7	7	7	7	7

■ Number of iterations independent σ_{nc}/σ_c and $\varepsilon!$

Box problem - RZ

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- Solvers used
- ❖ Box problem
- \clubsuit Box problem XY

\clubsuit Box problem - RZ

- \clubsuit Box problem 3D
- Coax problem
- $\ \, \bullet \, {\sf Coax} \, \, {\sf problem} \, \hbox{-} \, RZ$
- $\ \, \bullet \, {\sf Coax} \, \, {\sf problem} \, \hbox{--} \, 3 \, D$
- Conclusions

- Comparison of overall solution times pure void
- $\theta = 0.17, \, \sigma_{nc}/\sigma_c = 0$

$1/\varepsilon$	n_{it}	$t_{assemble}$	t_{solver}	t
1	8/8	1.74/0.75	11.9/3.96	×2.9
2	8/ 8	1.66/0.71	12.2/4.08	×2.9
4	10/ 8	1.76/0.72	14.2/4.09	×3.3
8	16/ 8	1.73/0.69	20.1/3.84	×4.8
16	28/ 9	1.65/0.71	26.7/4.01	×6.0
32	45/11	1.35/0.71	34.6/4.69	×6.7
64	74/14	1.23/0.71	50.1/5.05	×8.9
128	125/18	1.27/0.71	80.9/6.53	×11.
256	211/24	1.26/0.71	138./8.31	×15.
512	362/28	1.49/0.69	236./9.47	×23.
1024	500/30	1.25/0.71	315./9.70	×30.
2048	707/31	1.26/0.71	352./10.4	×32.
4096	828/33	1.04/0.68	407./11.0	×35.

- This is AMG for the Schur complement of a singular matrix!
- Iteration times increase, but we need less of them for small ε .

Box problem - RZ

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- Solvers used
- ❖ Box problem
- \clubsuit Box problem XY

\clubsuit Box problem - RZ

- \clubsuit Box problem 3D
- Coax problem

- $\ \, \bullet \, {\it Coax problem } \, 3D$
- Conclusions

Reduced p	oroblem – de	pendence on σ
-----------	--------------	----------------------

$$\theta = 0.17$$

	σ_{nc}/σ_c					
$1/\varepsilon$	1	10^{-2}	10^{-4}	10^{-6}	10^{-8}	0
1	8	8	8	8	8	8
2	8	8	8	8	8	8
4	8	8	8	8	8	8
8	8	9	9	8	8	8
16	8	9	9	9	9	9
32	11	11	11	11	11	11
64	14	14	14	14	14	14
128	19	18	18	18	18	18
256	27	23	23	23	23	24
512	32	28	28	28	28	28
1024	56	47	47	47	47	30
2048	65	52	53	53	53	31
4096	71	58	57	57	57	33

■ Not sensitive to jumps in σ ; improved robustness for $\sigma_{nc} = 0$.

Box problem - 3D

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- Solvers used
- ❖ Box problem
- \clubsuit Box problem XY
- \clubsuit Box problem RZ

♦ Box problem - 3 D

- Coax problem
- \diamond Coax problem XY
- $\ \, \bullet \, {\sf Coax} \, \, {\sf problem} \, \hbox{-} \, RZ$
- $\ \, \bullet \, {\it Coax problem } \, 3D$
- Conclusions

Comparison of overall solution	itimes
--------------------------------	--------

$$\theta = 0.5, \, \sigma_{nc}/\sigma_c = 10^{-4}$$

$1/\varepsilon$	n_{it}	$t_{assemble}$	t_{solver}	t
1	9/ 8	6.58/5.04	40.3/17.3	×2.1
2	9/ 8	7.34/5.14	47.6/16.1	×2.6
4	16/ 9	7.10/5.07	67.6/16.5	×3.5
8	29/ 15	7.71/5.15	111./23.8	×4.1
16	49/ 26	7.40/5.15	178./37.1	×4.4
32	79/ 42	8.15/5.11	262./55.1	×4.5
64	121/ 66	7.83/4.95	372./85.1	×4.2
128	180/107	6.66/5.23	546./138.	×3.8
256	248/163	7.73/5.23	807./205.	×3.9
512	332/234	8.65/5.01	1025/278.	×3.7
1024	485/297	7.73/4.27	1327/299.	×4.4
2048	677/268	6.58/3.65	1968/213.	×9.1
4096	1064/250	7.55/4.19	3862/256.	×15.

- Convergence deteriorates significantly on stretched grids.
- **Performance** is practically uniform in θ .

Box problem - 3D

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- Solvers used
- ❖ Box problem
- \clubsuit Box problem XY
- \clubsuit Box problem RZ

♦ Box problem - 3D

- Coax problem
- \diamond Coax problem XY
- $\ \, \bullet \, \mathsf{Coax} \,\, \mathsf{problem} \, \hbox{-} \,\, RZ$
- ♦ Coax problem 3D

Conclusions

■ Reduced problem – dependence on σ

$$\theta = 0.5$$

	σ_{nc}/σ_c					
$1/\varepsilon$	1	10^{-2}	10^{-4}	10^{-6}	10^{-8}	0
1	8	8	8	8	8	8
2	8	8	8	8	8	8
4	9	9	9	9	9	9
8	15	15	15	15	15	15
16	26	26	26	26	26	26
32	41	42	42	42	42	42

lacktriangle Convergence is independent of jumps in σ

Coax problem

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- Solvers used
- Box problem
- \clubsuit Box problem XY
- ♦ Box problem RZ
- ♦ Box problem 3D

Coax problem

- ❖ Coax problem XY
- \diamond Coax problem RZ
- ♦ Coax problem 3D

Conclusions

- Four coaxial cylindrical conductors with varying conductivity.
- Mock up for the kinds of jumps in Z-pinch simulations.
- $\sigma \sim \{10^{-2}, 10^{-8}, 10^{-2}, 0\}, \Delta t/\mu \sim 10^{-4}.$
- lacktriangleq XY and RZ cases correspond to the top and front sides.
- \blacksquare $\theta = 0.5$, $\varepsilon = 1$
- AMS-CG convergence tolerance 10^{-10} .

Coax problem - XY

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- ❖ Solvers used
- ❖ Box problem
- ♦ Box problem XY
- \clubsuit Box problem RZ
- ♦ Box problem 3 D
- Coax problem

❖ Coax problem - XY

- \diamond Coax problem RZ

Conclusions

np	N	n_{it}
1	15,013 / 7,589	13/10
4	59,721 / 30,025	14/10
16	238,225 / 119,441	15/13
64	951,585 / 476,449	17/15
<mark>256</mark>	3,803,713 / 1,903,169	<mark>20/17</mark>

■ S has 1.6 times fewer nonzero entries compared to A.

np	$t_{assemble}$	t_{setup}	t_{solve}	t
1	0.13/0.10	0.07/0.03	0.21/0.08	×1.9
4	0.14/0.11	0.09/0.05	0.23/0.09	×1.8
16	0.17/0.13	0.12/0.07	0.47/0.19	×1.9
64	0.26/0.14	0.27/0.19	0.75/0.36	×1.8
256	0.22/0.17	0.98/0.75	1.58/0.79	×1.6

Coax problem - RZ

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- ❖ Solvers used
- ❖ Box problem
- \clubsuit Box problem XY
- ightharpoonup Box problem RZ
- ♦ Box problem 3 D
- Coax problem
- \diamond Coax problem XY

❖ Coax problem - RZ

♦ Coax problem - 3D

Conclusions

np	N	n_{it}
1	21,720 / 7,320	10/11
4	86,640 / 29,040	10/12
16	346,080 / 115,680	11/13
<mark>64</mark>	1,383,360 / 461,760	12/13

■ S has 2.1 times fewer nonzero entries compared to A.

np	$t_{assemble}$	t_{setup}	t_{solve}	t
1	0.19/0.12	0.21/0.09	0.56/0.27	×2.0
4	0.19/0.11	0.34/0.15	0.84/0.43	×2.0
16	0.24/0.13	0.54/0.26	1.70/0.72	×2.2
64	0.24/0.14	1.23/0.63	2.48/1.10	×2.1

Coax problem - 3D

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

- ❖ Solvers used
- ❖ Box problem
- \clubsuit Box problem XY
- \clubsuit Box problem RZ
- ♦ Box problem 3 D
- Coax problem
- \diamond Coax problem XY
- Coax problem RZ

❖ Coax problem - 3D

Conclusions

np	N	n_{it}
1	208,370 / 78,774	12/10
8	1,640,728 / 621,224	13/10
64	1,3021,568 / 4,934,592	14/11
512	103,756,864 / 39,337,280	15/14

■ S has 1.4 times fewer nonzero entries compared to A.

np	$t_{assemble}$	t_{setup}	t_{solve}	t
1	3.58/2.57	10.0/3.17	23.8/6.91	×2.9
8	4.03/2.77	32.5/6.95	55.1/10.9	×4.4
64	4.60/3.15	80.3/18.5	113./28.8	×3.9
512	6.47/3.32	174./75.5	210./113.	×2.0

Conclusions

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

Conclusions

- The AMG/AMS solvers perform well in practice when applied to reduced scalar/electromagnetic diffusion problems.
- Typical speed-up factors in the considered simulations were 1.6-4.2 (XY), 2.0-36 (RZ) and 2.0-4.5 (3D).
- Typical memory reduction: **1.6** (XY), **2.1** (RZ) and **1.4** (3D).
- Reduced HX: AMS works on Schur complements!

$$(Su_r, u_r) \gtrsim (SG_{rr}p_r, G_{rr}p_r) + (S\Pi_{rr}z_r, \Pi_{rr}z_r) + (D_Sv_r, v_r)$$

- The elimination process leads to lower assembly, solver/setup times and faster iterations, independent of jumps in σ .
- Reduction can be easily modified to handle the pure void case.
- Some details can be found in

R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in $H(\mathbf{curl})$ and $H(\mathbf{div})$ spaces, *SINUM*, 2007.

Tz. Kolev and P. Vassilevski, Parallel auxiliary space AMG for $H(\mathbf{curl})$ problems, JCM, 2009.

hypre, http://www.llnl.gov/CASC/hypre.